Abstract

The rapid development of bacterial infections has become a significant global health challenge. The overuse or prolonged use of antibiotics is considered a major contributor to the development of bacterial resistance. Therefore, there is an urgent need to develop a new therapeutic approach to combat infectious diseases caused by bacteria. In this study, we demonstrate the effectiveness of a novel strategy for synergistic antibacterial therapy and fluorescence imaging of wound bacterial infections through the nano-confined construction of LL-37-HA-Au-Pt@PCN-224 nanozymes. The nanozyme is composed of Au NPs and Pt NPs confined to PCN-224 through in situ reduction, with its outer layer modified with HA and LL-37. The nanozyme catalyzes the conversion of low-concentration H2O2 into O2 and •OH, with the generated O2 further catalyzed into 1O2 by PCN-224. In vivo imaging experiments demonstrate that LL-37-HA-Au-Pt@PCN-224 labeled with near-infrared fluorescent dye MPA can effectively realize fluorescence imaging of wound bacterial infections and real-time monitoring of the wound healing process. In vitro and in vivo antibacterial experiments reveal that LL-37-HA-Au-Pt@PCN-224 enhances the healing efficiency of bacteria-infected wounds due to its synergistic antibacterial effect. The multifunctional nanozyme offers various synergistic antibacterial therapies, including antimicrobial peptides, peroxide nanozymes, hydrogen peroxide nanozymes, and photodynamic therapy. Moreover, it provides real-time wound imaging and monitoring of the wound healing process, while maintaining high biocompatibility. Overall, this study presents a promising perspective on the potential use of nanozymes as antibacterial agents against wound bacterial infections in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call