Abstract
The traditional pattern synthesis method of space-borne array is to achieve a \iso-∞ux beam coverage via approximating a desired pattern; however, the synthesized pattern may not optimize the whole satellite communication (SatCom) system performance. This paper analyzes the interference in multibeam SatCom system using CDMA, and establishes the relation model between user capacity and multibeam pattern. Additionally, a novel particle swarm optimization (PSO) based on simulated annealing (SA) pattern synthesis method is proposed, which chooses user capacity as synthesis objective function. The numerical analysis, which is performed for a hexagonal array with 19 stacked patch elements, conflrms that user capacity is at least doubled with the \max-gain-∞ux beam coverage implemented by our method, compared to the \iso-∞ux coverage when communication outage probability is 10%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.