Abstract

The frequency of wildfires in the western United States has escalated in recent decades. Here we examine the impacts of wildfires on ground-level ozone (O3) precursors and the O3-NOx-VOC chemistry from the source to downwind urban areas. We use satellite retrievals of nitrogen dioxide (NO2) and formaldehyde (HCHO, an indicator of VOC) from the Tropospheric Monitoring Instrument (TROPOMI) to track the evolution of O3 precursors from wildfires over California from 2018 to 2020. We improved these satellite retrievals by updating the a priori profiles and explicitly accounting for the effects of smoke aerosols. TROPOMI observations reveal that the extensive and intense fire smoke in 2020 led to an overall increase in statewide annual average HCHO and NO2 columns by 16% and 9%. The increase in the level of NO2 offsets the anthropogenic NOx emission reduction from the COVID-19 lockdown. The enhancement of NO2 within fire plumes is concentrated near the regions actively burning, whereas the enhancement of HCHO is far-reaching, extending from the source regions to urban areas downwind due to the secondary production of HCHO from longer-lived VOCs such as ethene. Consequently, a larger increase in NOx occurs in NOx-limited source regions, while a greater increase in HCHO occurs in VOC-limited urban areas, both contributing to more efficient O3 production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.