Abstract

AbstractThe quantification of multivariate uncertainties in partial differential equations can easily exceed any computing capacity unless proper measures are taken to reduce the complexity of the model. In this work, we propose a multidimensional Galerkin proper orthogonal decomposition that optimally reduces each dimension of a tensorized product space. We provide the analytical framework and results that define and quantify the low‐dimensional approximation. We illustrate its application for uncertainty modeling with polynomial chaos expansions and show its efficiency in a numerical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.