Abstract
A parallel, relativistic, three-dimensional particle-in-cell code SPACE has been developed for the simulation of electromagnetic fields, relativistic particle beams, and plasmas. In addition to the standard second-order Particle-in-Cell (PIC) algorithm, SPACE includes efficient novel algorithms to resolve atomic physics processes such as multi-level ionization of plasma atoms, recombination, and electron attachment to dopants in dense neutral gases. SPACE also contains a highly adaptive particle-based method, called Adaptive Particle-in-Cloud (AP-Cloud), for solving the Vlasov-Poisson problems. It eliminates the traditional Cartesian mesh of PIC and replaces it with an adaptive octree data structure. The code's algorithms, structure, capabilities, parallelization strategy, and performance have been discussed. Typical examples of SPACE applications to accelerator science and engineering problems are described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.