Abstract
A parallel particle-in-cell code SPACE has been developed for the simulation of electromagnetic fields, relativistic particle beams, and plasmas. The algorithms include atomic processes in the plasma, proper boundary conditions, an efficient method for highly-relativistic beams in non-relativistic plasma, support for simulations in relativistic moving frames, and special data transfer algorithm from the moving to the laboratory frame that collects particles and fields in the lab frame without time shift due to the Lorentz transform, enabling data analysis and visualization. Plasma chemistry algorithms implement atomic physics processes such as the generation and evolution of plasma, recombination of plasma, and electron attachment on dopants in dense neutral gas. Benchmarks and experimental validation tests are also discussed. The code has been used for the simulation of processes relevant to the eRHIC program at BNL and the high pressure RF cavity (HPRF) program at Fermilab.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.