Abstract

Iron (Fe) chlorosis is a common symptom in many soybean (Glycine max L. Merr.) producing areas throughout the United States. On the Blackland soils found in northeast Texas, Fe chlorosis occasionally appears during vegetative growth, but often abates by the time plants flower. However, it is not clear whether preplant additions of Fe will enhance soybean growth or yield on this soil or whether different sources of Fe give different responses. In a greenhouse study, soil from a pH 8.4 Houston Black clay (fine, smectitic, thermic Udic Haplusterts), with a DTPA‐extractable concentration of 11.7 mg Fe kg−1, was treated with FeSO4 (0, 3, 10, 30, and 100 ppm Fe), sodium ferric diethylenetriamine pentaacetate (FeDTPA) (0, 0.3, 1.0, 3, and 10 ppm Fe) or sodium ferric ethylenediamine‐di (o‐hydroxyphenylacetate) (FeEDDHA) (0, 0.3, 1.0, 3, and 10 ppm Fe). Pot size was 19 L and soil dry mass was 10 kg. Soybean (cv. Hutcheson) seed were planted in November 2000 and seedlings were thinned to three per pot at the first true leaf stage. The third uppermost fully expanded leaf of each plant was harvested at growth stage R3 for nutrient analysis. Between 20 and 100 days after planting, six nondestructive leaf chlorophyll readings were obtained from the third uppermost fully expanded leaf. Entire plants were harvested at R6 (mid podfill) for nutrient and biomass yield determination. Leaf blade Fe concentration ranged from 79 to 87 mg kg−1 in the untreated check plants to a high of 109 mg kg−1 for the 10 ppm FeDTPA‐Fe treatment, all of which were greater than the acknowledged critical level of 60 mg kg−1. No visible Fe‐deficiency symptoms appeared during the study. Chlorophyll (SPAD 502) values during the R3 to R5 growth stages were greater for all of the FeSO4 treatments than for the 0 ppm treatment. The 10 ppm FeDTPA‐Fe treatment and the 3 ppm FeEDDHA‐Fe treatment exhibited higher leaf chlorophyll readings than the untreated checks during the R3 to R5 growth stage. The average seed yield from the 12 Fe fertilized treatments at growth stage R6 was only 12% greater (not significant) than the untreated check. Total biomass (root plus shoot) was not affected by the treatments. There was no evidence that the higher rates of Fe caused reduced growth. Overall, our results do not suggest that soil‐applied Fe will consistently stimulate soybean growth or yield on this soil, at least when DTPA‐extractable soil Fe is at 12 mg kg−1 or higher. However, because of the trends for increased seed yield in some of the Fe treatments, field studies using soil‐ and/or foliar‐applied Fe are warranted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call