Abstract

Chronic wounds are a worldwide problem that affect >40 million people every year. The constant inflammatory status accompanied by prolonged bacterial infections reduce patient's quality of life and life expectancy drastically. An important cell type involved in the wound healing process are mesenchymal stromal cells (MSCs) due to their long-term demonstrated immunomodulatory and pro-regenerative capacity. Thus, in this work, we leveraged and compared the therapeutic properties of MSCs derived from both adipose tissue and hair follicle, which we combined with sponge-like scaffolds (SLS) made of valorized soy protein and β-chitin. In this regard, the combination of these cells with biomaterials permitted us to obtain a multifunctional therapy that allowed high cell retention and growing rates while maintaining adequate cell-viability for several days. Furthermore, this combined therapy demonstrated to increase fibroblasts and keratinocytes migration, promote human umbilical vein endothelial cells angiogenesis and protect fibroblasts from highly proteolytic environments. Finally, this combined therapy demonstrated to be highly effective in reducing wound healing time in vivo with only one treatment change during all the experimental procedure, also promoting a more functional and native-like healed skin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call