Abstract

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multipotent growth factor, which plays an important role during the process of wound healing. In clinical settings it has occasionally been employed in the treatment of cutaneous wounds of diverse etiologies. In a previous study, we have shown the positive influence of GM-CSF on full thickness excisional wounds in transgenic mice overexpressing GM-CSF in the basal layer of the epidermis. Direct GM-CSF action as well as indirect processes through the induction of secondary cytokines were proposed to contribute towards the beneficial effects. In this study, we analyzed the process of wound healing in transgenic mice overexpressing a GM-CSF antagonist in the epidermis. These mice not only exhibited a delayed scab rejection and reepithelialization but also neovascularization was reduced. The newly formed tissue was of poor quality as exhibited by the presence of extensive fibrosis. We suggest that the presence of GM-CSF in the repair process is of basic importance and its absence leads not only to delayed wound healing but it is also detrimental for the quality of the newly formed tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call