Abstract

Abstract The Southern Hemisphere (SH) stratospheric stationary wave amplitude increased significantly in late spring and early summer during the last two decades of the twentieth century. A suite of chemistry climate model simulations are examined to explore the underlying cause and the separate effects of anthropogenic forcing from ozone depleting substances (ODSs) and greenhouse gases (GHGs) in the past and projected SH stationary wave evolution. The model simulations produce trends in the wave amplitude similar to that observed, although somewhat weaker. In simulations with changing ODSs, this increase in amplitude is reproduced during the ozone depletion period and is reversed during the ozone recovery period. This response is related to changes in the strength and timing of the breakdown of the SH polar vortex associated with ozone depletion and recovery. GHG increases have little impact on the simulated stratospheric stationary wave amplitude but are projected to induce an eastward phase shift of the waves. This phase shift is linked to the strengthening of the subtropical jets driven by GHG forcing via sea surface warming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call