Abstract
Due to their specific characteristics, palm leaf manuscripts provide new challenges for text line segmentation tasks in document analysis. We investigated the performance of six text line segmentation methods by conducting comparative experimental studies for the collection of palm leaf manuscript images. The image corpus used in this study comes from the sample images of palm leaf manuscripts of three different Southeast Asian scripts: Balinese script from Bali and Sundanese script from West Java, both from Indonesia, and Khmer script from Cambodia. For the experiments, four text line segmentation methods that work on binary images are tested: the adaptive partial projection line segmentation approach, the A* path planning approach, the shredding method, and our proposed energy function for shredding method. Two other methods that can be directly applied on grayscale images are also investigated: the adaptive local connectivity map method and the seam carving-based method. The evaluation criteria and tool provided by ICDAR2013 Handwriting Segmentation Contest were used in this experiment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have