Abstract

Abstract The seasonal ice-free period in the Hudson Bay Complex (HBC) has grown longer in recent decades in response to warming, both from progressively earlier sea-ice retreat in summer and later sea-ice advance in fall. Such changes disrupt the HBC ecosystem and ice-based human activities. In this study, we compare 102 simulations from 37 models participating in phase 6 of the Coupled Model Intercomparison Project to the satellite passive microwave record and atmospheric reanalyses. We show that, throughout the HBC, models simulate an ice-free period that averages 30 d longer than in satellite observations. This occurs because seasonal sea-ice advance is unrealistically late and seasonal sea-ice retreat is unrealistically early. We find that much of the ice-season bias can be linked to a warm bias in the atmosphere that is associated with a southerly wind bias, especially in summer. Many models also exhibit an easterly wind bias during winter and spring, which reduces sea-ice convergence on the east side of Hudson Bay and impacts the spatial patterns of summer sea-ice retreat. These results suggest that, for many models, more realistic simulation of atmospheric circulation would improve their simulation of HBC sea ice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call