Abstract
Successful management of geothermal energy requires detailed understanding of physical and chemical conditions within the field prior to exploitation. It is thus crucial to identify fluids involved and their residence times, as well as the heat source, so as to assess the potential of the resource in terms of energy production. To this end, a geochemical study of relatively undisturbed fluids from the newly-developed Theistareykir geothermal field, Northern Volcanic Zone, Iceland was carried out on production wells, fumaroles, and mud pots. Noble gas (He, Ne, Ar, Kr, and Xe) elemental and isotopic abundances and stable isotopes (δ18O and δ2H) were measured to determine the system fluid sources and dynamics as exploitation proceeds. Results of this study, together with previously published data, show that four fluid sources are present: modern and local meteoric water (48.9%); sub-modern meteoric water from regional highlands precipitation (10.6%); pre-Holocene glaciated meteoric water (40.4%) with strongly depleted δ2H values of −127‰, calculated 40K-40Ar* fluid residence times from 57 ± 20 ka to 92 ± 30 ka and a (U/Th)-4He fluid residence times from 96 ± 50 ka to 160 ± 80 ka; and, finally, 3He-rich magmatic fluids. Concomitant enrichment in 18O and radiogenic 4He suggests that some fluids reside a long time in the reservoir, exchanging O and He with reservoir rocks. Maximum estimated helium isotopic ratios, 3He/4He (R), of 11.45 Ra (Ra = atmospheric ratio) show that the magma beneath Theistareykir is a depleted mid-ocean ridge basalt (MORB) mantle (DMM), with less influence (8.7 to 12.7%) of the Icelandic mantle plume source. Calculated heat (Q)/3He ratios plotted vs. R/Ra and 4He/36Ar ratios suggest that convective heat transport dominates the eastern part of the field where the magmatic heat source is located, while in other parts of the field, heat conduction seems to be dominant. Boiling and phase separation exists in the field, as indicated by δ18O values which fall to the left of the Global Meteoric Water Line in a δ18O vs. δ2H plot, but Q/3He ratios indicate that boiling affects only 1–10% of the fluid reservoir. With this obtained knowledge, any subsequent changes in the field conditions during the exploitation phase of Theistareykir can be better understood, helping to sustainably manage the resource.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.