Abstract
Karst water, with constituting major sources for water supply worldwide, is vulnerable and prone to be polluted. In this study, it is reported that karst water polycylic aromatic hydrocarbons (PAHs) pollution is caused by the infiltration of surface runoff in the bared carbonate areas, which is of universal significance for the protection of groundwater resources in karst region. Hydro-geochemistry, stable isotopes (δD, δ18O and 87Sr/86Sr) and characteristic ratio method were conducted together to illustrate the concentration, distribution, sources and pollution path of polycyclic aromatic hydrocarbons in groundwater in the Liulin karst water system of northern China. The results showed that total concentration of polycyclic aromatic hydrocarbons ranged from 39.25 to 16,830 ng/L in groundwater, with Naphthalene being the dominant component, and the median value increased gradually along the flow path. The highest polycyclic aromatic hydrocarbons concentrations in karst water were mainly observed in the coal mining and the discharge areas. Based on the characteristic ratios, the polycyclic aromatic hydrocarbons in the study area mainly come from local incomplete combustion of woods, fossil fuels, coal and liquid fuels. The slight shift of δD and δ18O and moderate 87Sr/86Sr ratios suggest that the polycyclic aromatic hydrocarbons in karst water is mainly polluted by surface runoff during rain events in the bared karst region. The leakage of river water may partly contribute to the polycyclic aromatic hydrocarbons in some karst water, which normally located close to the karst water - river water mixing line. This study provides a new technical method for tracing the sources and identifying the pollution paths of organic pollution in a karst water system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.