Abstract

This work seeks to present a comparative analysis of linear and analog/RF performances of a silicon (Si)-source double gate tunnel field effect transistors (DG-TFET), germanium (Ge)-source DG-TFET and Gate Material Engineered germanium (GME-Ge)-source DG-TFET. The objective of this analysis is to probe the viability of the Ge-source-DG-TFET and GME-Ge-source-DG-TFET as possible components of RF/microwave systems vis-a-vis conventional Si-source-DG-TFETs. The Ge-source-DG-TFET has been shown to have superior performance parameters as compared to the Si-source-DG-TFET. It is realized that the GME-Ge-source-DG-TFET preserves the superior performance of the Ge-source-DG-TFET and displays improved device reliability in contrast to the latter. With these ideas in the backdrop, a study of parasitic capacitances, transconductance (gm1) and its higher order coefficients (gm2 and gm3), and signal performance metrics such as VIP2, VIP3, third-order Input Intercept Point (IIP3) and third-order Intermodulation Distortion (IMD3) sheds light on the linear performances of the three devices. Further, the analog/RF performances of the three devices are investigated through analog/RF Figures of Merit (FOM) including current gain, unilateral power gain and maximum available power gain (Gma). This analysis reveals that the GME-Ge-source-DG-TFET is suitable for high-frequency, low-power operation required in modern communication systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call