Abstract

Evaluation of source term has been carried out for the upgraded LEU PARR-I system taken as a typical material test reactor (MTR). The modeling and simulation of release of radioactivity has been carried out by developing a Matlab based computer program which uses the ORIGEN2 code for core inventory calculations. For post 180 full-power days continuous operation, various accident scenarios, with instantaneous release of radioactivity to containment, have been considered including the startup, fuel loading, and loss-of-coolant accidents. For noble gases, iodine and for aerosols, the release rate studies have been carried out for the normal, emergency and for the isolation states of containment. The values of source term as well as that of containment retention factor show rapid increase followed by an approach towards saturation values as the exhaust rate values are increased. The isotope-dependency of the containment retention factor has been studied and the results indicate strong sensitivity for 85Kr, 137Xe, 138Xe and 138Cs towards exhaust rate values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.