Abstract

In this paper, we formulate diffuse optical tomography (DOT) problems as a source localization problem and propose a MUltiple SIgnal Classification (MUSIC) algorithm for functional brain imaging application. By providing MUSIC spectra for major chromophores such as oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR), we are able to investigate the spatial distribution of brain activities. Moreover, the false discovery rate (FDR) algorithm can be applied to control the family-wise error in the MUSIC spectra. The minimum distance between the center of mass in DOT and the Montreal Neurological Institute (MNI) coordinates of target regions in experiments was between approximately 6 and 18 mm, and the displacement of the center of mass in DOT and fMRI ranged between 12 and 28 mm, which demonstrate the legitimacy of the DOT-based imaging. The proposed brain mapping method revealed its potential as an alternative algorithm to monitor the brain activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.