Abstract

Intermediate volatility organic compounds (IVOCs) are important precursors of secondary organic aerosols, and their sources remain poorly defined. N-alkanes represent a considerable portion of IVOCs in atmosphere, which can be well identified and quantified out of the complex IVOC pool. To investigate the potential source diversity of intermediate volatility n-alkanes (IVnAs, nC12-nC20), we apportioned the sources of IVnAs in the atmosphere of four North China cities, based on their compound-specific δ13C-δD isotope compositions and Bayesian model analysis. The concentration level of IVnAs reached 1195 ± 594 ng/m3. The δ13C values of IVnAs ranged -32.3 to -27.6‰ and δD values -161 to -90‰. The δD values showed a general increasing trend toward higher carbon number alkanes, albeit a zigzag odd-even prevalence. Bayesian MixSIAR model using δ13C and δD compositions revealed that the source patterns of individual IVnAs were inconsistent; the relative contributions of liquid fossil combustion were higher for lighter IVnAs (e.g., nC12-nC13), while those of coal combustion were higher for heavier IVnAs (e.g., nC17-nC20). This result agrees with principal component analysis of the dual isotope data. Overall, coal combustion, liquid fossil fuel combustion, and biomass burning contributed about 47.8 ± 0.1, 35.7 ± 4.0, and 16.3 ± 4.2% to the total IVnAs, respectively, highlighting the importance of coal combustion as an IVnA source in North China. Our study demonstrates that the dual-isotope approach is a powerful tool for source apportionment of atmospheric IVOCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call