Abstract
ABSTRACT Source counts – the number density of sources as a function of flux density – represent one of the fundamental metrics in observational cosmology due to their straightforward and simple nature. It is an important tool that provides information on galaxy formation and evolution. Source counting is a direct measurement. Compared to advanced analyses that require more observational input such as luminosity/mass functions, it is less affected by any cosmological parameter assumptions or any errors propagated from luminosities. In this study, we present source counts at the six mid-infrared (MIR) bands, i.e. 7.7, 10, 12.8, 15, 18, and 21 μm from the MIR instrument of the JWST. Contrasted with the infrared source counts achieved by prior generations of infrared space telescopes, our source counts delve up to ∼100 times deeper, showcasing the exceptional sensitivity of the JWST, and aligning with the model predictions based on preceding observations. In a follow-up study, we utilize our source counts to establish a new IR galaxy population evolutionary model that provides a physical interpretation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.