Abstract

The broad Sr isotopic variability exhibited by granitoid rocks is commonly interpreted to reflect the mixing of magmas from different sources. However, evidence from granites and migmatites indicates that melting and magma extraction from crustal sources can occur sufficiently rapidly that trace-element and isotopic equilibration between liquid and residual phases is commonly not achieved. Additionally, evidence from unmelted high-grade metamorphic rocks indicates that major reactant minerals in the fluid-absent melting process, principally biotite and plagioclase, do not always attain equilibrium during regional metamorphism. When these two circumstances occur in combination, the melt does not inherit its radiogenic isotopic signature from the bulk source in a simple way. In such situations, the isotopic composition of the melt will be dependent on the isotopic compositions of the reactant phases and the stoichiometry of the melting reaction. This study has used information from experimental studies of fluid absent partial melting in metapelites and metagreywackes to investigate the consequences of Sr isotopic disequilibrium between the reactant minerals for magma composition. The study demonstrates that a range of isotopically distinct magmas can arise from progressive melting of a single source that is able to undergo melting through different reactions as temperature increases. When translated to the typically layered sources constituted by sedimentary and volcano-sedimentary rocks, this process will produce magmas characterized by Sr isotope variability that reflects the differences in melting reaction stoichiometry within the different layers, even with no bulk-rock isotopic variability between layers. This study demonstrates that the Sr isotope variability commonly observed within granitic suites, as well as at the grain and sub-grain scale within individual magmatic bodies, can be primary, reflecting differences in composition between magma batches produced from the progressive melting of a single source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.