Abstract
Despite a perception that it represents a perverse divergence, it is perfectly possible to believe in the existence of S- and I-type granites (and the implications for the nature of their protoliths), and to disbelieve in the applicability of the restite-unmixing model for chemical variation in granitic magmas. White and Chappell erected the S–I classification with impeccable validity. The isotopic evidence demands contrasting source reservoirs for S- and I-type granitic magmas. However, the major advance was not the classification, but the recognition that highly contrasting parental materials must be involved in the genesis of granitic magmas. The restite-unmixing model is commonly seen as a companion to the S–I classification, but it is really a separate issue. This model implies that the compositions of granites ‘image’ those of their source rocks in a simple way. However, there are other equally valid models that can explain the data, and none of them represents a unique solution. The most cogent explanation for the high-grade metasedimentary enclaves in most S-type granites is that they represent mid-crustal xenoliths; restitic enclaves are either rare or absent. Inherited zircons in S-type rocks are certainly restitic. However, the occurrence of a substantial restitic zircon population does not imply an equally substantial restitic component in the rest of the rock. Zircon and zirconium behaviours are controlled by disequilibrium and kinetics, and Zr contents of granitic rocks can rarely be used to infer magma temperatures. Since the dominant ages among inherited zircons in Lachlan Fold Belt (LFB) S-type granites are Ordovician and Proterozoic, it seems likely that crust of this age, but geochemically different from the exposed rocks, not only underlies much of the LFB but also forms a component in the granite magma sources. The evidence is overwhelming that the dark, microgranular enclaves that occur in both S- and I-type granites are igneous in origin. They represent globules of quenched, more mafic magma mingled and modified by exchange with the host granitic magma. However, magma mixing does not appear to be a significant process affecting the chemical evolution of the host magmas. Likewise, the multicomponent mixing models erected for some granitic rock suites are mathematically nonunique and, in some cases, violate constraints from isotopic studies. S- and I-type magmas commonly retain their distinct identities. This suggests limited source mixing, limited magma mixing and limited wall-rock assimilation. Though intermediate types certainly exist, they are probably relatively minor in volume. Crystal fractionation probably plays the major role in the differentiation of very many granitic magmas, including most S-types, especially those emplaced at high crustal levels or in the volcanic environment. Minor mechanisms include magma mixing, wall-rock assimilation and restite unmixing. Isotopic variations within plutons and in granite suites could be caused by source heterogeneities, magma mixing, assimilation and even by isotopic disequilibrium. However, source heterogeneity, coupled with the inefficiency of magma mixing is probably the major cause of observed heterogeneity. Normal geothermal gradients are seldom sufficient to provide the necessary heat for partial melting of the crust, and crustal thickening likewise fails to provide sufficient heat. Generally, the mantle must be the major heat source. This might be provided through mantle upwelling and crustal thinning, and possibly through the intra- and underplating of mafic magmas. Upper crustal extension seems to have been common in regions undergoing granitic magmatism. Migmatites probably provide poor analogues of granite source regions because they are mostly formed by fluid-present reactions. Granitic magmas are mostly formed by fluid-absent processes. Where we do see rare evidence for arrested fluid-absent partial melting, the melt fraction is invariably concentrated into small shear zones, veinlets and small dykes. Thus, it seems likely that dyking is important in transporting granitic magma on a variety of scales and at many crustal levels. However, one major missing link in the chain is the mechanism by which melt fractions, in small-scale segregations occurring over a wide area, can be gathered and focused to efficiently feed much wider-spaced major magma conduits. Answers may lie in the geometry of the melting zones and in the tendency of younger propagating fractures to curve toward and merge with older ones. Self-organization almost certainly plays a role.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.