Abstract

This study investigated sources of volatile organic compounds (VOCs) observed during periods of elevated hydrocarbon concentrations adjacent to a cold heavy oil extraction area in Alberta, Canada. Elevated total hydrocarbon (THC) concentrations were observed during the early morning hours and were associated with meteorological conditions indicative of gravitational drainage flows. THC concentrations were higher during the colder months, an occurrence likely promoted by a lower mixing height. On the other hand, other VOCs had higher concentrations in the summer; this is likely due to increased evaporation and atmospheric chemistry during the summer months. Of all investigated VOC compounds, alkanes contributed the greatest in all seasons. A source apportionment method, positive matrix factorization (PMF), was used to identify the potential contribution of various sources to the observed VOC concentrations. A total of five factors were apportioned including Benzene/Hexane, Oil Evaporative, Toluene/Xylene, Acetone and Assorted Local/Regional Air Masses. Three of the five factors (i.e., Benzene/Hexane, Oil Evaporative, and Toluene/Xylene), formed 27% of the reconstructed and unassigned concentration and are likely associated with emissions from heavy oil extraction. The three factors associated with emissions were comparable to the available emission inventory for the area. Potential sources include solution gas venting, combustion exhaust and fugitive emissions from extraction process additives. The remaining two factors (i.e., Acetone and Assorted Local/Regional Air Mass), comprised 49% of the reconstructed and unassigned concentration and contain key VOCs associated with atmospheric chemistry or the local/regional air mass such as acetone, carbonyl sulphide, Freon-11 and butane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.