Abstract

Abstract. In this work, the source of ambient particulate matter (PM10) collected over a one-year period at an urban background site in Lens (France) was determined and investigated using a positive matrix factorization receptor model (US EPA PMF v3.0). In addition, a potential source contribution function (PSCF) was performed by means of the Hybrid Single-Particle Lagrangian Integrated Trajectory (Hysplit) v4.9 model to assess prevailing geographical origins of the identified sources. A selective iteration process was followed for the qualification of the more robust and meaningful PMF solution. Components measured and used in the PMF included inorganic and organic species: soluble ionic species, trace elements, elemental carbon (EC), sugar alcohols, sugar anhydride, and organic carbon (OC). The mean PM10 concentration measured from March 2011 to March 2012 was about 21 μg m−3 with typically OM, nitrate and sulfate contributing to most of the mass and accounting respectively for 5.8, 4.5 and 2.3 μg m−3 on a yearly basis. Accordingly, PMF outputs showed that the main emission sources were (in decreasing order of contribution) secondary inorganic aerosols (28% of the total PM10 mass), aged marine emissions (19%), with probably predominant contribution of shipping activities, biomass burning (13%), mineral dust (13%), primary biogenic emissions (9%), fresh sea salts (8%), primary traffic emissions (6%) and heavy oil combustion (4%). Significant temporal variations were observed for most of the identified sources. In particular, biomass burning emissions were negligible in summer but responsible for about 25% of total PM10 and 50% of total OC in wintertime. Conversely, primary biogenic emissions were found to be negligible in winter but to represent about 20% of total PM10 and 40% of total OC in summer. The latter result calls for more investigations of primary biogenic aerosols using source apportionment studies, which quite usually disregard this type of source. This study further underlines the major influence of secondary processes during daily threshold exceedances. Finally, apparent discrepancies that could be generally observed between filter-based studies (such as the present one) and aerosol mass spectrometer-based PMF analyses (organic fractions) are also discussed.

Highlights

  • During the last decades, air pollution has become of an increasing concern, especially in urban areas, due to its adverse effect on human health (Pope and Dockery, 2006)

  • We report a source apportionment of ambient PM10 concentrations in an urban background site located in the northern part of France, a region which is frequently subjected to PM10 limit value exceedances (MEDDE, 2011)

  • Chemical composition, concentrations and potential emissions sources of PM10 at a northwestern Europe regional urban background site was investigated based on filter samples collected from March 2011 through March 2012

Read more

Summary

Introduction

Air pollution has become of an increasing concern, especially in urban areas, due to its adverse effect on human health (Pope and Dockery, 2006). A. Waked et al.: Source apportionment of PM10 in Lens, France by means of the PMF model (PM) exposure have been well established in the literature (e.g., Ramgolam et al, 2009; Pope et al, 2009). Identification of PM sources is necessary to develop air quality improvement strategies in order to be able to control and reduce ambient PM concentrations through targeted actions. To address this issue, many tools have been used for the identification and quantification of PM sources (Paatero and Tapper, 1994; Schauer et al, 1996; Ulbrich et al, 2009). Chemical speciation of ambient PM coupled to receptor modeling is currently considered one of the most powerful tools for this purpose (Srimuruganandam and Shiva Nagendra, 2012)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call