Abstract
ABSTRACT With the goal of corroborating existing emissions inventories of volatile organic compounds (VOCs), a statistical analysis was undertaken on measured ambient VOC concentrations in Maricopa County, Arizona. The Chemical Mass Balance (CMB) model was used to generate emissions source contribution estimates based on ambient VOC concentrations collected at the JLG Supersite in Phoenix, Arizona, and emissions source profiles obtained from EPA’s SPECIATE database. With trial-and-error, optimal model performance using a combination of emissions source profiles yielded source contribution estimates which could be compared to existing regulatory engineering-based emissions inventories. The ultimate objective of this study is to offer a comparison to the “top-down” emissions modeling via CMB and the “bottom-up” modeling traditionally used in preparing emission inventories to identify possible discrepancies and help direct future investigations to better understand local air quality. The methods used to develop the “bottom-up” inventory rely upon sound modeling developed to accurately capture emissions from various source categories. The results show discrepancies between the “bottom-up” and “top-down” emission inventory for VOC emissions from biogenic and natural gas combustion sources, suggesting that the emission strength from these source categories should be further investigated. Implications: The following implication statement has been prepared for the manuscript titled Source Apportionment of Measured Volatile Organic Compounds in Maricopa County, Arizona. The purpose of preparing such a study was to independently corroborate the findings of Maricopa County Air Quality Department (MCAQD) on source contribution estimates of VOC emissions as published in their 2020 Periodic Emissions Inventory for Ozone Precursors. The goal of preparing the findings in the study was to provide additional commentary on the significance of various VOC emissions sources to tropospheric ozone formation in Maricopa County through an alternate air quality modeling approach. The findings from this study are significant to the environment and health of Maricopa County as they offer additional insights into the pathways by which tropospheric ozone may form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.