Abstract

There is strong demand to maintain the trend of increasing bit density and reducing bit cost in Flash memory technology. To this end, aggressive scaling of the device dimension and multi-level cell (MLC) or multi-bit cell (MBC) have been proposed in NAND and NOR Flash memory architectures. However, especially in NAND Flash memory, bit cost is expected to rise in the near future, because the process cost will increase more rapidly than the shrink rate. One solution to avoid such challenges is the use of three dimensionally stacked array structures, based on polycrystalline silicon (poly-Si). The utilization of poly-Si in the channel not only increases pass disturbs but also reduces the worst case string current. Indeed, for every doubling in density, the worst case string current halves. Since the channel of these devices is poly-Si and source/drain (S/D) regions are not formed (i.e., a junction-free structure), the worst case string current (all cells in a string with high threshold voltage (VT)) will quickly tend toward unreadably low values as density increases (Walker, 2009). Therefore, it is worthwhile to note that the impact on the S/D structures becomes important. Moreover, Fowler-Nordheim (FN) tunneling for programming is still very slow for certain applications that require high-speed operation. In NOR Flash memory, channel length scaling has threatened continued scaling and approaching its end point. For uniform channel hot electron injection (CHEI) programming, a robust margin for punch-through is a pre-requisite for cell transistors. However, CHEI programming aggravates immunity against punch-through by increasing the drain voltage to a level that will trigger CHEI. It is clear that the drain voltage window to guarantee both programming speed and margin from drain disturbance is narrowed as the channel length scales down. Moreover, the low injection efficiency compromising from vertical and lateral fields and the high parasitic resistance at the S/D junctions also impose a constraint on scaling the cell size reduction. Consequently, the lower effective program voltage due to the high parasitic S/D resistance in an extremely scaled cell results in a small VT window and thereafter retards the program speed. Herein S/D engineering for enhanced performance of Flash memory for two novel structures is demonstrated: (i) a dopant-segregated Schottky-barrier device (DSSB), and (ii) a junctionless MOSFET. First, we utilized dopant-segregated metallic silicide S/D junctions on charge trapping memory cells. They boosted the program speed even at a low program bias with the aid of abrupt band bending at the edge of metal silicided junctions. Second, the

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call