Abstract
Smartwatches have the potential to provide glanceable, always-available sound feedback to people who are deaf or hard of hearing (DHH). We present SoundWatch, a smartwatch-based deep learning application to sense, classify, and provide feedback about sounds occurring in the environment. To design SoundWatch, we first examined four low-resource sound classification models across four device architectures: watch-only, watch+phone, watch+phone+cloud, and watch+cloud. We found that the best model, VGG-lite, performed similar to the state of the art for nonportable devices although requiring substantially less memory (∼1/3 rd ) and that the watch+phone architecture provided the best balance among CPU, memory, network usage, and latency. Based on these results, we built and conducted a lab evaluation of our smartwatch app with eight DHH participants. We found support for our sound classification app but also uncovered concerns with misclassifications, latency, and privacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.