Abstract
Smartwatches have the potential to provide glanceable, always-available sound feedback to people who are deaf or hard of hearing. In this paper, we present a performance evaluation of four low-resource deep learning sound classification models: MobileNet, Inception, ResNet-lite, and VGG-lite across four device architectures: watch-only, watch+phone, watch+phone+cloud, and watch+cloud. While direct comparison with prior work is challenging, our results show that the best model, VGG-lite, performed similar to the state of the art for non-portable devices with an average accuracy of 81.2% (SD=5.8%) across 20 sound classes and 97.6% (SD=1.7%) across the three highest-priority sounds. For device architectures, we found that the watch+phone architecture provided the best balance between CPU, memory, network usage, and classification latency. Based on these experimental results, we built and conducted a qualitative lab evaluation of a smartwatch-based sound awareness app, called SoundWatch (Figure 1), with eight DHH participants. Qualitative findings show support for our sound awareness app but also uncover issues with misclassifications, latency, and privacy concerns. We close by offering design considerations for future wearable sound awareness technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.