Abstract
In this paper, we explore the capabilities of a sound classification system that combines a Neuromorphic Auditory System for feature extraction and an artificial neural network for classification. Two models of neural network have been used: Multilayer Perceptron Neural Network and Spiking Neural Network. To compare their accuracies, both networks have been developed and trained to recognize pure tones in presence of white noise. The spiking neural network has been implemented in a FPGA device. The neuromorphic auditory system that is used in this work produces a form of representation that is analogous to the spike outputs of the biological cochlea. Both systems are able to distinguish the different sounds even in the presence of white noise. The recognition system based in a spiking neural networks has better accuracy, above 91 %, even when the sound has white noise with the same power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.