Abstract

The goal of this paper is to use artificial intelligence to build and evaluate an adaptive learning system where we adopt the basic approaches of spiking neural networks as well as artificial neural networks. Spiking neural networks receive increasing attention due to their advantages over traditional artificial neural networks. They have proven to be energy efficient, biological plausible, and up to 105 times faster if they are simulated on analogue traditional learning systems. Artificial neural network libraries use computational graphs as a pervasive representation, however, spiking models remain heterogeneous and difficult to train. Using the artificial intelligence deductive method, the paper posits two hypotheses that examines whether 1) there exists a common representation for both neural networks paradigms for tutorial mentoring, and whether 2) spiking and non-spiking models can learn a simple recognition task for learning activities for adaptive learning. The first hypothesis is confirmed by specifying and implementing a domain-specific language that generates semantically similar spiking and non-spiking neural networks for tutorial mentoring. Through three classification experiments, the second hypothesis is shown to hold for non-spiking models, but cannot be proven for the spiking models. The paper contributes three findings: 1) a domain-specific language for modelling neural network topologies in adaptive tutorial mentoring for students, 2) a preliminary model for generalizable learning through back-propagation in spiking neural networks for learning activities for students also represented in results section, and 3) a method for transferring optimised non-spiking parameters to spiking neural networks has also been developed for adaptive learning system. The latter contribution is promising because the vast machine learning literature can spill-over to the emerging field of spiking neural networks and adaptive learning computing. Future work includes improving the back-propagation model, exploring time-dependent models for learning, and adding support for adaptive learning systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.