Abstract
The sound radiated when inflow turbulence is present in axial flow fans has been investigated. Theoretically, two noise radiating mechanisms can be identified: (i) interaction of turbulence with the rotor potential field results in a quadrupole-type volume source distribution, producing “flow-interaction” noise; (ii) impingement of turbulence on the blades results in a dipole-type (fluctuating force) surface source distribution, producing “fluctuating lift” noise. A theoretical expression for the flow interaction sound power in the upstream radiation field has been developed, in terms of parameters that can be experimentally determined by near field flow measurements involving spatial cross-correlations of the fluctuating axial velocity, with respect to both radial and circumferential position. Both these measurements and radiated sound pressure measurements have been made for eight- and ten-bladed rotors of relatively low tip Mach number (< 0·3). The sound pressure measurements revealed the occurrence of band-spreading of discrete tones at the blade passing frequency and its harmonics, as would be theoretically predicted for quadrupole-type sources here. The theoretical predictions and the measurements, respectively, of the sound power radiated upstream were compared. The results indicated that, for the fans tested, the “fluctuating lift” noise strongly predominated over the “flow-interaction” noise. The observed sound power levels were consistent with levels estimated from the theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.