Abstract

Sound frequency and binaural response properties were determined for single neurons in the rat's inferior colliculus. Nerve cell responses in the central nucleus of the inferior colliculus were narrowly tuned and had clearly defined characteristic frequencies (CF). The central nucleus was tonotopically organized with low frequencies represented dorsolaterally and high frequencies ventromedially from 0.87 to 45 kHz. Sharpness of tuning, as indicated by Q 10, covered a wide range of values for neurons with the same CF, but the maximum Q 10 at each frequency increased monotonically with CF. Maximum Q 10s were larger than previously reported for auditory cortex at the same CF. Binaural responses were classified as either suppression, summation or mixed. Most of the units encountered exhibited binaural suppression but there were substantial numbers of both summation and mixed responses. Each major binaural response type was distributed broadly across sound frequencies within the rat's hearing range. Binaural suppression responses were most numerous at high frequencies and summation responses at low frequencies. The binaural response types, their relative proportions and their distribution by CF were similar for neurons in the central nucleus of inferior colliculus and primary auditory cortex of the albino rat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.