Abstract
This paper summarizes recent results of the study and development of high-power nanosecond generators employing a semiconductor opening switch. Physical processes, which underlie the operating principle of high-power opening switches based on nanosecond interruption of super-density currents in semiconductor diodes (SOS-effect), are discussed. Advances with SOS-diodes, which represent new high-voltage devices for nanosecond interruption of high-density currents, are discussed. The semiconductor structure of the SOS-diodes is compared with the structure of soft- and hard-recovery high-voltage rectifier diodes. The physical processes that occur in the semiconductor structure during pumping and interruption of the current are considered. SOS-generators having the output voltage from 0.1 to 1 MV, the pulse repetition frequency from 0.1 to 5 kHz, and the average output power of units to tens of kW, are described. Application of the SOS-generators is exemplified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.