Abstract

The SOS response aids bacterial propagation by inhibiting cell division during repair of DNA damage. We report that inactivation of the ftsI gene product, penicillin binding protein 3, by either beta-lactam antibiotics or genetic mutation induces SOS in Escherichia coli through the DpiBA two-component signal transduction system. This event, which requires the SOS-promoting recA and lexA genes as well as dpiA, transiently halts bacterial cell division, enabling survival to otherwise lethal antibiotic exposure. Our findings reveal defective cell wall synthesis as an unexpected initiator of the bacterial SOS response, indicate that beta-lactam antibiotics are extracellular stimuli of this response, and demonstrate a novel mechanism for mitigation of antimicrobial lethality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.