Abstract

Contemporary biomedical research requires development of novel techniques for sorting and manipulation of cells within the framework of a microfluidic chip. The desired functions of a microfluidic chip are achieved by combining and integrating passive methods that utilize the channel geometry and structure, as well as active methods that include magnetic, electrical, acoustic and optical forces. Application of magnetic, electric and acoustics-based methods for sorting and manipulation have been and are under continuous scrutiny. Optics-based methods, in contrast, have not been explored to the same extent as other methods, since they attracted insufficient attention. This is due to the complicated, expensive and bulky setup required for carrying out such studies. However, advances in optical beam shaping and computer hardware, and software have opened up new opportunities for application of light to development of advanced sorting and manipulation techniques. This review outlines contemporary techniques for cell sorting and manipulation, and provides an in-depth view into the existing and prospective uses of light for cell sorting and manipulation.

Highlights

  • In the fields of biomedicine and biological research efficient and high-throughput cell sorting and manipulation is crucial

  • Latest advances in cell biology, disease diagnostics and medicine have increased the demand in rapid, safe and accurate cell sorting and manipulation devices

  • Microfluidic devices are at the center of attention due to low sample and reagent volume requirement, portability, ability to work on a single cell scale level and self-contained nature allowing safer handling of hazardous liquids and materials

Read more

Summary

Background

In the fields of biomedicine and biological research efficient and high-throughput cell sorting and manipulation is crucial. These advantages include small dimensions, laminar flow profile, velocity gradients, high surface to volume ratio, fast rate of processing, ability to perform analysis with an extremely small sample quantity, and ability to integrate into larger systems [38] These advantages enable coupling of other, physical forces-based cell sorting and manipulation methods, i.e. magnetic, electric, acoustic or optical, into a microfluidic system as well as integration with other microfluidics devices for simultaneous analysis of a sample. Such capabilities allow to reduce costs, increase efficiency and automate sample analysis. These factors might interfere with analysis of cells after sorting and manipulation

Application of light radiation
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.