Abstract

Current control techniques for optical tweezers work only when the cell is located in a small neighbourhood around the centroid of the focused light beam. Therefore, the optical trapping fails when the cell is initially located far away from the laser beam or escapes from the optical trap during manipulation. In addition, the position of the laser beam is treated as the control input in existing optical tweezers systems and an open-loop controller is designed to move the laser source. In this paper, we propose a new robotic manipulation technique for optical tweezers that integrates automatic trapping and manipulation of biological cells into a single method. Instead of using open-loop control of the position of laser source as assumed in the literature, a closed-loop dynamic control method is formulated and solved in this paper. We provide a theoretical framework that bridges the gap between traditional robotic manipulation techniques and optical manipulation techniques of cells. The proposed controller allows the transition from trapping to manipulation without any hard switching from one controller to another. Simulation and experimental results are presented to illustrate the performance of the proposed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.