Abstract
AbstractSorption data for H2O in glassy poly(acrylonitrile)(PAN) are presented for a range of relative vapor pressures at temperatures from 20 to 50°C. Simple dual mode sorption, involving “hole‐filling” and molecular solution appears to dominate the low activity region of sorption. Based on the clustering analysis suggested by Zimm and Lundberg, pronounced clustering of penetrant appears to occur above a relative pressure of 0.6. The form of the effective concentration‐dependent diffusion coefficient for H2O in PAN, determined by analysis of steady state permeation data, suggests that water in the microvoids and clusters has a lower mobility than the molecularly dissolved water in the polymer matrix. Time lag measurements at high upstream relative water vapor pressures suggest that the transient state permeation has a non‐Fickian character due to relaxations which occur slowly to accommodate the clustering process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have