Abstract

AbstractWe assess the relationship between model size and complexity in the time‐varying parameter vector autoregression (VAR) framework via thorough predictive exercises for the euro area, the United Kingdom, and the United States. It turns out that sophisticated dynamics through drifting coefficients are important in small data sets, while simpler models tend to perform better in sizeable data sets. To combine the best of both worlds, novel shrinkage priors help to mitigate the curse of dimensionality, resulting in competitive forecasts for all scenarios considered. Furthermore, we discuss dynamic model selection to improve upon the best performing individual model for each point in time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.