Abstract

Stable inheritance of bacterial chromosomes and low copy number plasmids is ensured by accurate partitioning of replicated molecules between the daughter cells at division. Partitioning of the prophage of the temperate bacteriophage N15, which exists as a linear plasmid molecule with covalently closed ends, depends on the sop locus, comprising genes sopA and sopB, as well as four centromere sites located in different regions of the N15 genome essential for replication and the control of lysogeny. We found that binding of SopB to the centromere can silence centromere-proximal promoters, presumably due to subsequent polymerizing of SopB along the DNA. Close to the IR4 centromere site we identified a promoter, P59, able to drive expression of phage late genes encoding the structural proteins of virion. We found that following binding to IR4 the N15 Sop proteins can cause repression of this promoter. The repression depends on SopB and became stronger in the presence of SopA. Sop-dependent silencing of centromere-proximal promoters control gene expression in phage N15, particularly preventing undesired expression of late genes in the N15 prophage. Thus, the phage N15 sop system not only ensures plasmid partitioning but is also involved in the genetic network controlling prophage replication and the maintenance of lysogeny.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call