Abstract
The sonolysis of 4-chlorophenol (4-CP) in O 2-saturated aqueous solutions is investigated for a variety of operating conditions with the loss of 4-CP from solution following pseudo-first-order reaction kinetics. Hydroquinone (HQ) and 4-chlorocatechol (4-CC) are the predominant intermediates which are degraded on extended ultrasonic irradiation. The final products are identified as Cl −, CO 2, CO, and HCO 2H. The rate of 4-CP degradation is dependent on the initial 4-CP concentration with an essentially linear increase in degradation rate at low initial 4-CP concentrations but with a plateauing in the rate increase observed at high reactant concentrations. The results obtained indicate that degradation takes place in the solution bulk at low reactant concentrations while at higher concentrations degradation occurs predominantly at the gas bubble–liquid interface. The aqueous temperature has a significant effect on the reaction rate. At low frequency (20 kHz) a lower liquid temperature favours the sonochemical degradation of 4-CP while at high frequency (500 kHz) the rate of 4-CP degradation is minimally perturbed with a slight optimum at around 40 °C. The rate of 4-CP degradation is frequency dependant with maximum rate of degradation occurring (of the frequencies studied) at 200 kHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.