Abstract

A sonochemical method by using various time and concentrations of initial reagents and power of irradiation, was used to synthesize nano-card house of a new copper(II) metal-organic coordination system, {[Cu2(p-2yeinh)2Cl2]·(H2O)}n (1), where p-2yeinh=pyridin-2-yl ethylidene-isonicotinohydrazide. The compound was characterized by scanning electron microscopy (SEM), elemental analysis, IR spectroscopy, X-ray powder diffraction (XPRD), and single crystal X-ray analysis. The X-ray structure revealed that the Cu(II) atom is coordinated by one oxygen and three nitrogen atoms from two p-2yeinh ligands and one chloride anion with a CuN3OCl donor set with square pyramid geometry. This arrangement produces a large quadric nuclear square ring composed of four square pyramid Cu(II) moieties linked together by two p-2yeinh units (M4L4). The adjacent frameworks connected by strong hydrogen bonding interactions of methanol molecules that interact together and with the rings and π–π interactions of adjacent aromatic rings of p-2yeinh and other weak interactions. Consequently, the labile interactions also allow the discrete structure to form a 3D metal-organic coordination network. CuO nanoparticles were obtained by thermolysis of 1 at 180°C with oleic acid as a surfactant. The average diameter of the nanoparticles was estimated by XPRD to be 38nm. The morphology and size of the prepared CuO nanoparticles were further studied using SEM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.