Abstract

A comprehensive algorithm was recently proposed for calculation of the sonochemical effectiveness factor and wastewater treatment modeling. The presented approach implies that ultrasound is an auxiliary source of free radicals in Fenton type reactions; introduction of ultrasound represents an enhancement of pollutant degradation rates. The sonochemical effectiveness factor was introduced in kinetic models as the eUS factor (Grčić et al., 2012 [1]). As a substantial follow-up, this study presents novel considerations. The eUS factor was modeled as a function of employed frequency, actual cavitation-related power intensity of ultrasound and a portion of the cavitationally active zone, i.e. dimensionless active volume. The effect of temperature was disregarded in the present model considerations. Cavitationally active zone in reactors was determined based on the erosion of aluminum foil, resulting in cone-shaped space arising from transducer.In the present study, sonochemical treatment of industrial wastewater containing HCOONa as organic pollutant was performed using different equipment: ultrasonic baths (UB1, UB2 and UB3), cylindrical reactor with homogenizer (HCR) and three-frequency hexagonal cell, i.e. ultrasonic pilot reactor prototype (PP). Explored frequency range was from 20 to 120kHz. Homogeneous and heterogeneous Fenton-type sonochemical processes, US/Fe(II)(FeSO4,aq.)/H2O2 and US/Fe(II)(steel-plate)/H2O2, respectively, applied to industrial wastewater were investigated in terms of mineralization kinetics. Newly modeled eUS factor was introduced in corresponding kinetic models and the overall model was validated. Kinetic parameters of Fenton process were treated as independent of ultrasound, since eUS factor consists of cavitation-related phenomena responsible for the mineralization rate enhancement. In average, a 21% increase of mineralization efficiency was achieved using a single frequency, while more than 70% increase can be achieved by combining 20, 68 and 120kHz in PP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.