Abstract

Coomassie Brilliant Blue (CBB), discharged mainly from textile industries, is an identified water pollutant. Ultrasound initiated degradation of organic pollutants is one among the promising techniques and forms part of the Advanced Oxidation Processes (AOPs). Ultrasonic degradation of CBB under different experimental conditions has been investigated in the present work. The effect of frequency (200kHz, 350kHz, 620kHz and 1MHz) and power density (3.5WmL−1, 9.8WmL−1 and 19.6WmL−1) on the degradation profile was evaluated. The optimum performance was obtained at 350kHz and 19.6WmL−1. Similar to other sonolytic degradation of organic pollutants, maximum degradation of CBB was observed under acidic pH. The degradation profile indicated a pseudo-first order kinetics. The addition of ferrous ion (1×10−4M), hydrogen peroxide (1×10−4M), and peroxodisulphate (1×10−4M) had a positive effect on the degradation efficiency. The influence of certain important NOM like SDS and humic acid on the sonolytic degradation of CBB was also investigated. Both the compounds suppress the degradation efficiency. LC-Q-TOF-MS was used to identify the stable intermediate products. Nearly 13 transformed products were identified during 10min of sonication using the optimized operational parameters. This product profile demonstrated that most of the products are formed mainly by the OH radical attack. On the basis of these results, a degradation mechanism is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.