Abstract

The sonic hedgehog (SHH) pathway plays a key role in rodent adrenal cortex development and is involved in tumorigenesis in several human tissues, but data in human adrenal glands are limited. The objectives of the study were to analyze the involvement of the SHH pathway in human adrenal development and tumorigenesis and the effects of SHH inhibition on an adrenocortical tumor (ACT) cell line. Expression of SHH pathway components was evaluated by immunohistochemistry in 51 normal adrenals (33 fetal) and 34 ACTs (23 pediatric) and by quantitative PCR in 81 ACTs (61 pediatric) and 19 controls (10 pediatric). The effects of SHH pathway inhibition on gene expression and cell viability in the NCI-H295A adrenocortical tumor cell line after cyclopamine treatment were analyzed. SHH pathway proteins were present in fetal and postnatal normal adrenals and showed distinct patterns of spatiotemporal expression throughout development. Adult adrenocortical carcinomas presented with higher expression of PTCH1, SMO, GLI3, and SUFU compared with normal adult adrenal cortices. Conversely, pediatric ACTs showed lower mRNA expression of SHH, PTCH1, SMO, GLI1, and GLI3 compared with normal pediatric adrenal cortices. In vitro treatment with cyclopamine resulted in decreased GLI3, SFRP1, and CTNNB1 mRNA expression and β-catenin staining as well as decreased cell viability. The SHH pathway is active in human fetal and postnatal adrenals, up-regulated in adult adrenocortical carcinomas, and down-regulated in pediatric ACTs. SHH pathway antagonism impaired cell viability. The SHH pathway is deregulated in ACTs and might provide a new target therapy to be explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call