Abstract
Urbanization leads to homogenization of avian communities through local extinction of rare bird species and increasing numbers of the same common urban bird species over large geographical areas. Successful city birds often persist through some sort of behavioural plasticity that helps them survive and reproduce close to humans, in built-up areas, with all the typical urban feasts and hazards. In this review, I address whether behavioural plasticity of the acoustic phenotype can be an additional factor in explaining which species end up as urban survivors. Anthropogenic noise has been shown to negatively affect avian distribution and reproduction, especially for species that rely on relatively low-frequency songs for mediating territorial conflicts and attracting partners for mating. Spectral differences between songs of city and forest populations of the same species and correlations between individual song frequency use and local noise levels suggest that many successful city species shift song frequency upward under noisy urban conditions. Experimental evidence has confirmed the ability of several species to show rapid spectral adjustments as well as perceptual benefits of singing at higher frequency in noisy habitats. However, empirical evidence of fitness benefits for birds showing the ability and tendency of noise-dependent spectral adjustment is still lacking. Furthermore, depending on the species and the underlying mechanism for spectral change, there may also be fitness costs through a compromise on signal function. These two aspects are only two of many remaining avenues for future studies. The acoustic phenotype of urban birds provides a great model system to study fundamental processes such as causes and consequences of environmentally induced signal changes, ‘cultural assimilation’, and the relationship between phenotypic and genotypic evolution. Furthermore, the current and expected rate of urbanization remains high at a global scale, which will lead to further spread in time and space of artificially elevated noise levels. This should guarantee the continued interest of scientists, politicians and conservationists for many years ahead.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have