Abstract

Fish object detection and counting in pelagic fisheries face many challenges in complex environments. Sonar imaging technology offers a solution because it generates high-resolution images underwater. In this paper, we propose a sonar-based fish object detection and counting method using an improved YOLOv8 combined with BoT-SORT to address issues such as missed detection, false detection, and low accuracy caused by complex factors such as equipment motion, light changes, and background noise in pelagic environments. The algorithm utilizes the techniques of lightweight upsampling operator CARAFE, generalized feature pyramid network GFPN, and partial convolution. It integrates with the BoT-SORT tracking algorithm to propose a new region detection method that detects and tracks the schools of fish, providing stable real-time fish counts in the designated area. The experimental results indicate that while focusing on maintaining a lightweight design, the improved algorithm achieved a 3.8% increase in recall and a 2.4% increase in mAP0.5 compared to the original algorithm. This significantly impacts scientific and rational fishery planning, marine resource protection, and improved productivity. At the same time, it provides important data support for marine ecological monitoring, environmental protection, and fishery management, contributing to sustainable fishery development and marine ecology preservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.