Abstract
Given the heterogeneity and difficulty of classifying sonar targets, classifying these targets is a challenging problem in practice. In this paper, we propose a novel classification of sonar targets based on few-shot learning (FSL). The FSL can classify the data with only a few labeled training data. We also use the wavelet transform to denoise sonar signals and apply the short-time Fourier transform (STFT) to denoised signals. We propose a concept extraction method based on the STFT and find concept points to improve the performance of FSL classification. We evaluate the impact of concept numbers on accuracy. The main distinguishing feature of our proposed technique is the low sonar data requirement compared to other classification techniques. Our numerical experiments show that the proposed classification technique using the concept extraction method significantly improves the system performance in terms of accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.