Abstract

Blue metal-poor stars (BMPs) are main sequence stars that appear bluer and more luminous than normal turnoff stars. They were originally singled out by using B-V and U-B colour cuts. Early studies found that a larger fraction of field BMP stars were binaries compared to normal halo stars. Thus, BMP stars are ideal field blue straggler candidates for investigating internal stellar evolution processes and binary interaction. In particular, the presence or depletion in lithium in their spectra is a powerful indicator as to their origin. They are either old, halo blue stragglers experiencing internal mixing processes or mass transfer (Li-depletion), or intermediate-age, single stars of possibly extragalactic origin (2.2dex halo plateau Li). However, we note that internal mixing processes can lead to an increased level of Li. Hence, this study combines photometry and spectroscopy to unveil the origin of various BMP stars. We first show how to separate binaries from young blue stars using photometry, metallicity, and lithium. Using a sample of 80 BMP stars (T>6300K), we find that 97% of the BMP binaries have V-Ks_0 < 1.08$\pm0.03$, while BMP stars that are not binaries lie above this cut in 2/3 of the cases. This cut can help classify stars which lack radial velocities from follow-up observations. We trace the origin of two BMP stars from the photometric sample by conducting a full chemical analysis using new high-resolution and high SN spectra. Based on their radial velocities, Li, alpha, and s- and r-process abundances we show that BPS CS22874-042 is a single star (A(Li)$=2.38\pm0.10$dex) while with A(Li)$=2.23\pm0.07$dex CD-48 2445 is a binary, contrary to earlier findings. Our analysis emphasises that field blue stragglers can be segregated from single metal-poor stars, using V-Ks colours with a fraction of single stars polluting the binary sample, but not vice versa.(Abridged)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.