Abstract
A considerable volume of knowledge is now available on random fluctuations (noise) as regards the behaviour in amplitude. Familiar names in this field are those of Uhlenbeck and Ornstein(7), Fürth(1) and Rice (4), although very many others have made valuable contributions. A particular class of problem, of considerable practical importance, exists when the frequency spectrum is limited to a relatively narrow range. The resulting noise has then the character of a more or less regular oscillation modulated randomly in amplitude and phase. In this case, if we write the fluctuation in the form(where R(t) and θ(t) are variables changing slowly in comparison with sinω0t), it is clear that the magnitude of the envelope R(t) and the phase θ(t) are now the significant quantities. Rice (4), among others, has made a study of the statistical properties of R, deriving in particular the correlation function R(t) R(t + τ) in terms of the characteristics of the (power) spectrum ω(f). Fürth and the writer (2) have extended this work and carried out a collateral experimental investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.