Abstract

We examine power spectra from the Abell/ACO rich cluster survey and the Two-Degree Field Galaxy Redshift Survey (2dFGRS) for observational evidence of features produced by the baryons. A nonnegligible baryon fraction produces relatively sharp oscillatory features at specific wavenumbers in the matter power spectrum. However, the mere existence of baryons will also produce a global suppression of the power spectrum. We look for both of these features using the false discovery rate statistic. We show that the window effects on the Abell/ACO power spectrum are minimal, which has allowed for the discovery of discrete oscillatory features in the power spectrum. On the other hand, there are no statistically significant oscillatory features in the 2dFGRS power spectrum, which is expected from the survey's broad window function. After accounting for window effects we apply a scale-independent bias to the 2dFGRS power spectrum, PAbell(k) = b2P2dF(k) and b = 3.2. We find that the overall shapes of the Abell/ACO and the biased 2dFGRS power spectra are entirely consistent over the range 0.02 ≤ k ≤ 0.15 h Mpc-1. We examine the range of Ωmatter and baryon fraction, for which these surveys could detect significant suppression in power. The reported baryon fractions for both the Abell/ACO and 2dFGRS surveys are high enough to cause a detectable suppression in power (after accounting for errors, windows, and k-space sampling). Using the same technique, we also examine, given the best-fit baryon density obtained from big bang nucleosynthesis, whether it is possible to detect additional suppression due to dark matter-baryon interaction. We find that the limit on dark matter cross section/mass derived from these surveys is the same as those ruled out in a recent study by Chen, Hannestad, & Scherrer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call