Abstract
The formula of Faa di Bruno is used to calculate higher order derivatives of a composition of functions. In this paper, we first review the multivariate version due to Constantine and Savits [A multivariate Faa di Bruno formula with applications, Trans. AMS 348 (1996) 503–520]. We next derive some useful recursion formulas. These results are then applied to obtain both explicit expressions and recursive formulas for the multivariate Hermite polynomials and moments associated with a multivariate normal distribution. Finally, an explicit expression is derived for the formal Edgeworth series expansion of the distribution of a normalized sum of iid random variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.